Bidimensional Election Systems:

Apportionment methods in theory and practice

TALK AT TECHNICAL UNIVERSITY OF MUNICH ON JANUARY 14, 2019
(FORSCHUNGSSEMINAR M9: ANGEWANDTE GEOMETRIE UND DISKRETE MATHEMATIK)
THORKELL HELGASON
UNIVERSITY OF ICELAND, EMERITUS
MEMBER OF THE ICELANDIC CONSTITUTIONAL COUNCIL 2011

Some of the following slides were not shown in the talk, due to lack of time

Abstract

In the Nordic countries, as well as in many other, the electoral systems to the national assemblies are in a way bidimensional: Seats are apportioned within constituencies (or districts) but with respect to the national outcome of the parties. For that purpose, the seats are divided into proper constituency seats and adjustment seats. The allocation of the latter is mathematically interesting but politically controversial.
Balinski and Demange have presented fairness properties which allocation methods of this kind (i.e. of the adjustment seats) should respect. They prove that this demand leads to one and only one method - given a specific underlying one-dimensional divisor rule like that of d'Hondt or Sainte-Laguë. This optimal solution can also be formulated as a simple linear optimal assignment problem. Pukelsheim has managed to convince law makers in the Canton of Zürich, to adopt this optimal allocation method (based on dual multipliers). The speaker, who has been advising the Parliament and Governments in Iceland (one of the Nordic countries) for over a quarter of a century on electoral systems, has however experienced that politicians, lawyers and political scientists will only accept recursive algorithms for seat apportionments. Iterative methods are not agreeable but the optimal solution calls for iterations. Consequently, practical allocation methods for bidimensional electoral systems are inevitably only approximations to the optimal method. In the talk several near optimal allocation methods will be presented, many of which are derived from heuristics for the classical transportation problem (Monge, Vogel). To test the practicality and quality of these methods a simulation model has been developed and is presented in the talk. This model generates random election outcomes (with user-given averages, e.g. actual or typical election results). The seats are then allocated using the different heuristic methods. The quality of each method is measured using different indicators, classical and new, thus enabling a ranking of the tested methods, in particular in comparison with the optimal method.

Iceland, constituencies

The bidimensional proportional apportionment problem

as in Iceland, Norway, Sweden, Denmark (3D) and many other (mainly European) countries, even the election to the Bundestag...

Iceland 2003	Parties						
Constituencies	B	D	F	S	U	Seats in total	
Norðvestur						10	C_{1}
Norðaustur						10	
Suđur			$\begin{aligned} & V_{i j} \\ & x_{i j} \end{aligned}$			10	...
Suðvestur						11	
Reykjavík suđur						11	
Reykjavík norður						11	C_{m}
Seats by parties (const. and adjustment)	12	22	4	20	5	63	
	P_{1}		...		$\boldsymbol{P}_{\boldsymbol{n}}$		A

The problem:

Allocate seats $\boldsymbol{x}_{\boldsymbol{i} \boldsymbol{j}}$ s.t. vertical and horizontal sums are as given and that the assignments are as far as possible proportional to the numbers of votes $V_{i j}$ to the lists

Complications

In general $\sum_{i} C_{i}=A=\sum_{j} P_{j}$ (not so in the Bundestag election)\checkmark Inequalities can be dealt with but I will in this talk stick to equalities
\square Most often the (preassigned) constituency seats prescribe lower limits, $m_{i j}$ requiering $x_{i j} \geq m_{i j}$
\checkmark This may lead to „overhang" seats, which is politically problem, although technically not soGenerally the seats P_{j} are allocated proportionally to the national outcomeThis may not be the case for the (prior) distribution of seats C_{i} to the constituencies
\checkmark In Iceland the disproportionality is up to 2:1
\checkmark In Norway the distribution is based on

$$
\text { Number of inhabitants }+1.8 * \text { Squarekilometers }
$$

\checkmark In Denmark:
Number of inhabitants + Number of reg.voters $+20 *$ Squarekilometers

Allocation of adjustment seats

Balinski and Demange have proved:

There is only one solution to the bidimensional problem (given an underlying divisor rule, like d'Hondt's rule) satisfying some sensible axioms, like these (here somewhat freely interpreted):

- Monotonicity: No list looses seat by getting more votes or vice versa

IIA: Changes in votes of lists not leading to changes in allocation to them shall not affect allocation to other lists

Michel Louis Balinski / Gabrielle Demange: «An axiomatic approach to proportionality between matrices.» Mathematics of Operations Research 14 (1989) 700-719

An objective reflecting some kind of proportionality of the matrix of allocated seat $\left(x_{i j}\right)$ to the matrix of votes $\left(V_{i j}\right)$

subject to the constraints
$i \quad$ index for the constituencies
$j \quad$ index for the parties
$C_{i} \quad$ total number of seats of constituency i (proper constituency seats as well as adjustment seats)
$P_{j} \quad$ total number of seats of party j
$V_{i j} \quad$ votes of list $L_{i j}$
$m_{i j} \quad$ number of preassigned seats to list $L_{i j}$ e.g. number of constituency seats already assigned
$x_{i j} \quad$ number of seats to be allocated to list $L_{i j}$

Optimal solution

A result of Balinski and Demange can be interpreted so:

The only bidimensional apportionment method (given the divisor rule) satisfying (1-4) and fullfilling the axioms of $B \& D$ is equvalent to the shown linear optimization problem
(The solution will be integer!)

Coworker: Prof. Kurt Jörnsten

Thorkell Helgason / Kurt Jörnsten: «Entropy of proportional matrix apportionments.» Norwegian School of Economics and Business Administration, Institute of Finance and Management Science, Working Paper 4/94. Bergen-Sandviken, 1994.
(5) $\quad \max \left[\sum_{i} \sum_{j} \sum_{k} \ln \left(V_{i j} / d_{k}\right) x_{i j k}\right]$
subject to the constraints

$$
\begin{equation*}
\sum_{j} \sum_{k} x_{i j k}=C_{i} \tag{6}
\end{equation*}
$$

$$
\sum_{i} \sum_{k} x_{i j k}=P_{j}
$$

$$
0 \leq x_{i j k} \leq 1
$$

(9) $\quad x_{i j k}=1$ for $k=1, \ldots, m_{i j}$
$d_{k} \quad$ an increasing series of positive divisors; i.e. $d_{k}=k$ for the d'Hondt's rule
$x_{i j k}$ is 1 if list $L_{i j}$ gets its k 'th seat assigned but 0 zero otherwise

Alternating scaling method

By relaxation of the main constraints (6) and (7) one easily finds out that the optimal solution amounts to find optimal (dual) multipliers

Biproportional matrix scaling and the iterative proportional fitting procedure

F Pukelsheim - 2013-
opus.bibliothek.uni-augsburg.de

Find optimal (dual) multipliers α_{i} and β_{j} and rescale the votes
(10)

$$
W_{i j}:={ }^{V_{i j}} / \alpha_{i} \beta_{j}
$$

after which the apportionment based on the chosen divisor rule along parties or constituencies yield the same matrix apportionment satisfying the common constraints (6-9)

One set of the multipliers (alfas or betas) suffices.
Needing only one dimension may be politically easier

Constituency relaxation

Relaxation of the constituency constraints (6) alone leaves us with only one set of (unknown) multipliers

Find optimal (dual) constituency multipliers α_{i} and rescale the votes

$$
\begin{equation*}
W_{i j}:={ }^{V_{i j}} / \alpha_{i} \tag{11}
\end{equation*}
$$

after which the apportionment based on the chosen divisor rule along parties, given the party constraints (7), also satisfies the constraint on the constituency sums (6)

For mathematicians

the relevant paragraph of an election act could be quite simple:

Happy end?

Apportionment of [adjustment] seats to individual lists:

1. Determine allocation quotients by dividing the votes of the list by the integers 1, 2, 3. etc. [d'Hondt].
2. Apportion seats such that the product of the corresponding allocation quotients is maximized provided
a) that the total number of seats in each constituency equals the number of seats prescribed [see a previous paragraph] and
b) the total number of seats for each party equals the number of seats already attributed to it [see a previous paragraph].
3. [If ties then ...]

Has the optimal allocation method been implemented or if not why not?

- Cantons in Switzerland, first in Zürich \checkmark Thanks to Pukelsheim
- Not so in the Nordic countries
\checkmark Although it has been suggested and advocated

Political
 restrictions of mandate apportionments

At least in the Nordic countries

One-dimensional divisor rules:

Two ways of presentation

E.g. in the Nordic Countries:
d'Hondt, Sainte-Laguë ...
\square Primal: Constructive, one-by-one (here d'Hondt)

Parties	A	B	B	D	Sum
Divisors	Votes	4.500	3.400	1.400	$\mathbf{6 0 0}$
1	4.500	$\mathbf{3 . 4 0 0}$	1.400	600	
2	$\mathbf{2 . 2 5 0}$	1.700	700		
3	1.500	1.133			
4	1.125	850			
5	900	680			
6	750				
Apportioned	5	4	$\mathbf{1}$		$\mathbf{1 0}$

Elsewhere

Jefferson, Webster, Bi schoff, Schepers ..
\square Dual: Guessing a quo ta (here d'Hondt)

Parties	A	B	B	D	Sum
Votes	4.500	3.400		600	
First guess of quota (Hare)					1000
Seat shares	4,50	3,40	1,40	0,60	
Round down	4	3	1		8
Second guess of quota (Droop)					909
Seat shares	4,95	3,74	1,54	0,67	
Round down	4	3	1		8
Final guess of quota					800
Seat shares	5,63	4,25	1,75	0,88	
Round down	5	4	1		10

One-dimensional divisor rules:

Two ways of presentation

E.g. in the Nordic Countries:
d'Hondt, Sainte-Laguë ...
\square Primal: Constructive, one-by-one (here d'Hondt)

Parties	A	B	B	D	Sum
Votes	4.700	3.400	1.400	500	10.000
Divisors	4.700	3.400	1.400	500	
1	2.350	1.700	700		
2	1.567	1.133			
3	1.175	850			
4	940	680			
5	783				
6	5	4	1	0	10
Apportioned					

Elsewhere

Jefferson, Webster, Bischoff, Schepers ...
\square Dual: Guessing a quota
here d'Hondt)

Parties	A	B	B	D	Sum
Votes	4.700	3.400	1.400	500	10.000
First guess of quota (Hare)					1000
Seat shares	4,70	3,40	1,40	0,50	
Round down	4	3	1	0	8
Second guess of quota (Droop)					909
Seat shares	5,17	3,74	1,54	0,55	
Round down	5	3	1	0	9
Final guess of quota (in the range 784-850)					800
Seat shares	5,88	4,25	1,75	0,63	
Round down	5	4	1	0	10

Morale

$>$ In the Nordics the electorate and candidates are used to seeing step by step what happens
> In the German-speaking world the public is used to be presented with the results which they can verify (by playing with the quota)
> Therefore, may be, Pukelsheim has succeeded with the alternating scaling in the Switzerland
> But neither I, nor my colleagues in other Nordic countries
> In Italy, Serafini et.al. have suggested a compromise:
> A „Solver" (Virgil) presents the solution, the apportionment
$>$ A „Verifier" (Dante), as a layman, checks the validity
> The one-dimensional „Constituency relaxation" might fit into this middle-road

So what now?
Find a good heuristic to the B\&D optimal method

Better than the

 current electionlaws

Measures of proportionality

Reference apportionments:

Distance from some reference apportionments

Measured as number of different assignments

The minimum is 4 and then always even numbers
> Optimal method (B\&D=Max. entropy=AS)
> Current Icelandic election act
$>$ All seats constituency seats, i.e. no adjustment seats

Some quality indices

Some of many proportionality indices suggested for the onedimensional case; here adapted to two dimensions

In one dimension:

- Laguë minimizes LaguëSum
- d'Hondt minimizes d'HondtSum
d'Hondt maximizes d'HondtMin

$$
\begin{aligned}
& \text { Loosemore\&Hanby }:=\sum_{i} \sum_{j}\left|S_{i j}-x_{i j}\right| \\
& \text { LaguëSum }:=\sum_{i} \sum_{j} \frac{\left(S_{i j}-x_{i j}\right)^{2}}{S_{i j}} \\
& d^{\prime} \text { HondtSum }:=\sum_{i} \sum_{j} \frac{\left(S_{i j}-x_{i j}\right)^{+}}{S_{i j}}
\end{aligned}
$$

$$
\text { Ideal share of seats }:=s_{i j}:=V_{i j} / \rho_{i} \mu_{j}
$$

$$
d^{\prime} H o n d t M i n:=\min _{i, j} \frac{S_{i j}}{x_{i j}}
$$

s.t.

$$
\begin{aligned}
& \sum_{j} S_{i j}=C_{i} \\
& \sum_{i} S_{i j}=P_{j}
\end{aligned}
$$

ρ_{i} and μ_{j} non-negative reals

Methods
 for allocating (adjustment) seats

(Few out of several tested)

A handy definition

$>$ In the following methods seats are assigned one by one
> After each assignment, say to list $L_{i j}$, we will update the preassigned number of seats to that list: $m_{i j} \rightarrow m_{i j}+1$
$>$ Therefore, at each step we focus on candidate no. $m_{i j}+1$
$>$ We will therefor refer to
Seat-value of the next candidate $:=N_{i j}:=\frac{V_{i j}}{d_{m_{i j}+1}}$
or simply as the Seat-value of the list or the next candidate

Icelandic system

>54 constituency seats

>6 constituencies (now) with 7-11 seats each
$>$ Apportioned in each by d'Hondt
>9 adjustment seats to parties over 5\%
$>$ One in 3 constituencies and two in the other 3
> Apportioned nationally by d'Hondt, seat by seat:
$>$ At each step find that list of the relevant party whose next seat-value is highest as percentage of valid votes in the corresponding constituency
$>$ Assign the next seat to this list

Icelandic system simplified

>54 constituency seats

>6 constituencies with 7-11 seats each
> Apportioned by d'Hondt
>9 adjustment seats to parties over 5\%
$>$ One in 3 constituencies and two in the other 3
> Apportioned nationally by d'Hondt
$>$ Find the list with the highest seat-value as percentage of valid votes in the corresponding constituency
$>$ Assign the next seat to this list

Norwegian system

>150 constituency seats

>19 constituencies
$>$ Apportioned by the Scandinavian Sainte-Laguë (first divisor 1.4, not 1, but then 3, 5 ...)
>19 adjustment seats to parties over 4\%
$>$ One per constituency
> Apportioned nationally to parties by SainteLaguë
$>$ Find the list with the highest ideal constituency-share (i.e. calculated onedimensionally)
$>$ Assign the next seat to this list

A basic idea:

$2+2$ alternating chains

A tentative solution to the biproportional optimization can be improved if an augmenting alternating chain can be found

Looking for such chains is - politically impossible

But the shortest chains involving only $2+2$ lists may be acceptable
$>$ Consider four (available lists), located in a rectangle in the table of lists:

$L_{i j}$	\ldots	$L_{i l}$
\ldots		\ldots
$L_{k j}$	\ldots	$L_{k l}$

$>$ If $N_{i j} N_{k l}>N_{k j} N_{i l} \quad\left(\right.$ recall $N:=\frac{V}{d_{m+1}}$)
then allocating seats to the pair $L_{i j}$ and $L_{k l}$ would contribute more to the entropy than if we would choose the other diagonal pair $L_{k j}$ and $L_{i l}$

Monge

A.J. Hoffman, referring to an $18^{\text {th }}$ century scholar Gaspar Monge, identified conditions under which a route (a cell) in the Transportation problem must always be included in the optimal solution

This can be translated into the Entropy Optimization apportionment; not shown here

But nevertheless here is a simplified idea
$>$ Consider a list $L_{i j}$ as a candidate for the next seat in a recursive procedure
> Consider four (available lists), located in a rectangle in the table of lists:

> Define

$$
\begin{gathered}
\text { Monge-value }:=M_{i j}:=\min _{k, l}\left\{\frac{N_{i j} N_{k l}}{N_{k j} N_{i l}}\right\} \\
\text { Recall the seat-values: } N:=\frac{V}{d_{m+1}}
\end{gathered}
$$

Assign a seat to the list with highest Monge-value

Nearest neighbor method

This is a simplified version of the Relative superiority algorithm
$>$ In each constituency the next candidate is compared to the last assigned one
> This is done by comparing the ratios of their seat values
> Where this comparative ratio is highest the next seat is allocated

Seat-values

Neighborhood ratio
$=3466 / 3122=1,110$ or $11,1 \%$

Relative
 superiority algorithm

Motivation:
Vogel's approximation in the Transportation problem

Why not, like by Vogel, also find the relative superiority within a party?

Too complicated:
Calls for first scaling the votes
Politicians cannot only digest one-dimension at a time!
$>$ In each constituency the next top candidate is compared to the first possible substitute candidate to a seat

Other candidates of the party to which the first candidate belongs are ignored
$>$ This is done by comparing the ratios of their seat values
$>$ Where this comparative ratio is highest the next seat is allocated

RSA Relative superiority algorithm South-West Constituency in Iceland 2013 There are still two (adjustment) seats to be apportioned

Switching method

This method was suggested by the author in a revision of the Icelandic system in 1982 and was approved by the chairmen of all the major parties

However, it was killed in Parliament by a nickname, "The execution method":
"First you are elected in a constituency but then you are executed by an electoral squad"

A method, akin to this Switching method, where "overhang" seats in the allocation of the proper constituency seats are withdrawn, has been proposed 2008 in an official Swedish report; also in a paper by Ramírez-Gonzáles et. al. 2014

A similar method has (recently) also been advocated in Iceland by Mr. Kristinn Lund
$>$ First all seats are apportioned as constituency seats
> Find how many seats nationally to the parties
> Some may get an "overhang", i.e. are "overrepresented"
> Other are "underrepresentation"
$>$ In each constituency:
> Calculate: Current seat value of an overhang party / Next seat value of an underrepresented party
$>$ Where this ratio is smallest, seats are switched

Seat-values in a particular constituency
Switching ratio
=3466/3122=1,110 or
11,1\%
3466

Overhang party

* The idea is to minimize the change in entropy in this inevitable correction
* An other motivation is to minimize the deviations from (total) constituency apportionments

Heuristic methods and the B\&D axioms

- Every heuristic method violates at least one of the axioms B\&D; e.g. the monotonicity or the IIA
- But is it often or only in exceptional cases?
- Under the current Icelandic election law six elections have been carried out
- In two cases (i.e. by two lists) the monotonicity requirement was violated; this is out of some 250 possible cases, or about 1%
- The IIA was much more often violated

Testing the apportionment ideas

Which election data?

- Using real election results for testing the quality of proposed methods (election acts) has at least two drawbacks:
- There are too few elections results for any reasonable statistics!
- And passed elections are a part of history which may disturb the judgment of the decision makers (politicians)
- However election results used in tests to compare methods should be "relevant" in some sense
- The best method for a system with just one adjustment seat in each constituency (Norway, UK, ...) may not be the best for the other extreme, i.e. multimember constituencies where all seats are adjustment seats
- So we need simulated election results for the tests

Simulating election results

A work in progress!
Coworkers:

- Martha G. Bjarnadóttir
- Pétur G. Ólafsson
- Smári McCarthy

In alphabetic order, Icelandic style!

Note:

We are NOT fitting distribution to a data; just generating possible election outcomes

1. Reference outcome: A specific election outcome, or a "typical" one

- Like an average of all six elections in Iceland in this century

2. Distribution used: Beta distribution for each cell (list)

- Mean votes for a list = The votes in the reference outcome
- A parameter controlling the standard deviation is inputted
- The lists are considered independent from each other

3. Number of simulations:

- 1000 iterations seem to be enough; takes about 2 min per method in the example with about 40 lists and 9 adjustment seats.

Voting inttuctions Singleflection Smulat

Simulate elections

Settings

Simulation settings

Number of simulations	Generating method	Stability parameter
1000	Beta distribution	100
How many simulations should be run?	Which method should be used to generate random votes?	To influence the standard deviation of the distribution please provide a number greater than 1 (does not need to be an integer, and values close to 1 are allowed, such as 1.0001). This number represents stability, in some sense. Higher values result in lower standard deviation, and vice versa.

Simulate elections

Add election ruleset

Programming language: Python

Some results
 from the simulations

Reference data: Sort of average of all six elections in Iceland in this century

	Const. seats	Adj. seats	A	B	C	D	E	F
Norðvestur	7	1	30,8\%	18,3\%	26,6\%	17,9\%	4,6\%	1,8\%
Norðaustur	9	1	25,6\%	18,3\%	28,1\%	22,0\%	4,0\%	2,0\%
Suđur	9	1	33,8\%	21,2\%	25,9\%	11,3\%	5,7\%	2,2\%
Suđvestur	11	2	38,9\%	23,6\%	13,5\%	13,1\%	6,9\%	4,0\%
Reykjavík suđur	9	2	33,7\%	24,6\%	11,4\%	18,2\%	8,3\%	3,7\%
Reykjavík norður	9	2	31,1\%	24,8\%	10,5\%	20,6\%	9,3\%	3,7\%
Total	54	9	33,5\%	22,5\%	17,3\%	16,6\%	6,9\%	3,2\%

A
22,5\%

C

D

E

F

Average seat difference
of tested methods in comparison with three reference methods

54 constituency seats
9 adjustment seats
5\% threshold

All based on d'Hondt

1000 simulations

Average seat difference
of tested methods in comparison with three reference methods

0 constituency seats
63 adjustment seats
5\% threshold

All based on d'Hondt

1000 simulations

Relative average quality indices of the tested methods
In relation to the lowest and highest indices

Relative average quality indices of the tested methods
In relation to the lowest and highest indices

Conclusions

Next steps

Partnership
is very welcome!

Theory

$>$ Prove which of the B\&D axioms are fulfilled by the proposed methods; and/or find counterexamples
>How to test methods effectively in particular for monotonicity and IIA, in a computationally acceptable way

Simulation program

$>$ More user friendly
> More flexibility in electoral system design

Apportionment methods

> Develop current methods further
> Invent new - and better - methods

Ideas

$>$ Other optimization objectives, not just entropy
>How about "negative" assignments?: Gradually excluding lists

La salud de las democracias, cualquiera que sean su tipo y su grado, depende de un mísero detalle técnico: el procedimiento electoral. Todo lo demás es secundario.

The health of democracies, of whatever type and range, depends on a wretched technical detail- electoral procedure. All the rest is secondary.

> - Jose Ortega y Gasset -

$$
(1883-1955)
$$

